
Inverse Problems, Design and Optimization Symposium 
Rio de Janeiro, Brazil, 2004 

Inverse Mode Shape Problem For Bars and Beams with Flexible Supports 
 
 

G. K. Ananthasuresh 
Department of Mechanical Engineering and Applied Mechanics 

University of Pennsylvania 
Philadelphia, PA 19104-6315, U. S. A. 

gksuresh@seas.upenn.edu 
 

 
 
 
ABSTRACT 

Designing a structure for desired mode shapes, 
in addition to natural frequencies, is of interest in 
applications such as resonant-mode micro sensors 
and actuators, acoustics, manufacturing tooling, 
etc. This paper focuses on the inverse problem of 
determining the cross-section profile of a bar or a 
beam of a given homogeneous material so that it 
has a prescribed eigenmode shape. It is known 
that the range of mode shapes for a structure is 
restricted by its boundary conditions. After 
reviewing the reason underling this restriction, 
flexible supports are considered to expand the 
range of valid mode shapes. Both continuous and 
discretized models are considered, and closed-
form analytical solutions (wherever possible) and 
approximate numerical solutions are discussed. In 
particular, cubic shapes are used to illustrate the 
analytical solution method for the case of bars. 

 
INTRODUCTION 

The natural frequencies and normal mode 
shapes of structural members play an important 
role in machines that operate at high speeds or for 
high precision.  Some devices, especially at the 
micro scale, are intentionally operated at 
resonance frequencies to enhance their 
performance.  Examples of such devices include 
microsensors and microactuators. For instance, in 
the micro rate gyroscope [1], the mode shape of a 
ring structure can be optimized to improve the 
performance. Designing the shape of the 
cantilever probes on the atomic force microscope 
to attain a desired modal deflection is another 
example [2]. Mode shapes of a vibrating structure 
are also important in the design of ultrasonic 
motors [3]. At the macro scale, accoustic noise 
reduction can be achieved by suitably designing 
the structural member that is interacting with the 
noise-propagating fluid medium [4]. In 
manufacturing tooling, it is preferred to have 

certain parts of the fixtures not move due to 
external vibrations. There too, designing the mode 
shapes so that those parts do not move 
significantly even though the structure itself 
might vibrate. This work is motivated by all of 
these aforementioned applications. The focus of 
this paper is on simple structures such as axially 
vibrating bars and transversely vibrating beams. 
These two simple cases are rich enough to 
illustrate the principal features of such a design 
task in the context of solving it an an inverse 
eigenmode problem for given material. 

The “inverse frequency” problem has been 
studied extensively [5], including the topology 
optimization problem [6, 7].  In that problem, an 
elastic structure is to be sized and shaped to have 
a prescribed natural frequency. The “inverse 
mode shape” problem, on the other hand, entails 
the determination of the size and shape of the 
structure such that it will have prescribed mode 
shapes. Unlike the inverse frequency problem, the 
inverse mode shape problem has received much 
less attention.  

Inverse mode shape shape problems can be 
classified into two distinct groups. In the first 
category, experimentally obtained eigendata 
(natural frequencies and mode shapes) of the 
structures is used for the characterization of their 
geometry and material density. Efforts in this 
direction are found in [8-16]. In the second 
category, which is the focus of this paper, the 
geometry of the structure is designed for 
prescribed mode shapes using a given material. 
Efforts in this direction are found in [2, 17]. It 
should be noted that an arbitrarily specified mode 
shape might not always be physically realizable 
with a given class of structures such as strings, 
cables, rods, frames consisting of straight and 
curved beams, membranes and plates, shells, and 
general 3-D structures. Consequently, in the 
second category of “the design for desired mode 
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shape problems”, the prescribed mode shape 
should be checked against a set of criteria that 
ensure physical realizability.  

In the following sections, a brief description 
of the related work and our prior work are 
described. The motivation for flexible end 
consitions (i.e., spring supports) is then presented. 
The problem of the bars with flexible supports is 
presented in detail with analytical solutions as 
well as numerical solution for the discretized 
problem. The beam problem is presented in the 
section following that. Concluding remarks are in 
the last section. 

 
RELATED WORK 

Barcilon incorporated eigenvector data to 
reconstruct the physical parameters (spring 
constants and masses) in a discrete spring-mass 
model of a bar from three eigenvectors and their 
corresponding eigenvalues associated with three 
boundary conditions [18-20]. Ross presented a 
procedure for deriving both the mass and stiffness 
matrices from experimentally measured natural 
frequencies and a square modal matrix composed 
of measured mode vectors supplemented by 
arbitrary linearly independent vectors [8]. 
Gladwell derived the necessary and sufficient 
conditions applicable to the spectral data 
(eigenvalues and the corresponding eigenvectors) 
to permit the construction of a realizable beam 
[21]. Ram and Caldwell showed that the physical 
parameters of a free multi-connected spring-mass 
system could be determined from certain spectral 
sequences as well [12]. The inverse mode 
problem for the continuous model of an axially 
vibrating bar from two eigenvalues, the 
corresponding eigenvectors and the total mass of 
the system was solved by Ram [14]. Ram and 
Gladwell proposed a way to reconstruct a finite 
element model of a vibrating bar from a single 
eigenvalue and two eigenvectors based on the fact 
that both the mass and stiffness matrices of the 
finite element model are tri-diagonal [16]. Ram 
also showed a method of reconstructing a finite 
difference model of a vibrating beam from three 
eigenvectors, one eigenvalue and the total mass of 
the beam [15].  

The motivation of Ram and Gladwell’s work, 
and other references above was to recover the 
density and shape information from experimental 
eigendata of the structure.  This differs from the 
focus of this paper where the density is constant 
throughout the bar/beam. This has two 
consequences: (a) the physical parameters 

pertaining to springs and masses cannot be 
independent as they both depend on the area of 
cross-section, (b) there will be further restrictions 
on the range of valid mode shapes. It was 
discussed in [17] where fixed-free and fixed-fixed 
bars, and fixed-free beam were considered. The 
next section describes the problem determining 
the cross-section shape of the bar/beam for a 
given homogeneous material (i.e., the density and 
Young’s modulus are constant throughout). 
 
MOTIVATION AND PROBLEM DEFINITION 

Consider an axially deforming bar of cross-
section profile, )(xA , made of homogeneous 
material of Young’s modulus, E , and mass 
density, ρ . Figure 1 shows three types of 
boundary conditions that a bar can have, viz. 
fixed, free, and flexible supports. The support 
boundary conditions at the two ends naturally 
impose limits on the possible eigenmode shapes 
for the bar. By denoting the axial deformation as 

)(xA , the boundary conditions can be written as 
follows. 

Fixed:  0)( * =xu   (1a) 

Free:  0)(
*

* ==′
=xxdx

duxu  (1b) 

Flexible:  )()()( *** xukxuxEA s=′  (1c) 

where *x  is either 0  or L  , with L  denoting the 
length of the bar, and sk  the spring constant of 
the flexible support. The governing equation for 
the small-amplitude free vibrations of a bar is 
given by 

0)( =+′′ AuuEA λρ    (2) 
where λ  is the square of the natural frequency, 
ω , of the natural vibration, )(xu  is the mode 
shape, and )( ′⋅  indicates derivative w.r.t. x . 
 When a mode shape is prescribed, the area 
profile can be determined by re-writing Eq. (2) 
with )(xA  as the unknown. 
 0)( =+′′+′′ AuuEAuE λρ   (3) 
The solution of the above equation is given by 

 ∫=
− dx

CeA
ψ

    (4a) 
where 

 
uE

uuE
′

+′′
=

λρψ    (4b) 

and C  is determined with the constraint on the 
total mass of the bar. As discussed in [17], when 

)(xu  is given, λ  is automatically determined so 
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that the numerator in Eq. (4b) is zero or the 
denominator is cancelled of as a factor of the 
numerator. This is necessary because both the 
fixed-free and fixed-fixed boundary conditions 
will make u′  zero for some ],0[ Lx∈ . When that 
happens, ∞→ψ , which makes the resulting area 
profile not finite and hence physically realistic. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Boundary conditions of an axially 
deforming bar. 
 
 It should also be noted that for some 
prescribed shapes satisfying the fixed-free or 
fixed-fixed bundary conditions, it may not be 
possible to find a suitable λ , which makes them 
invalid mode shapes. The same is true for 
transfersely vibrating beams. In fact, the criteria 
for valid mode shapes are even more stringent and 
less understood for beams [17].  
 As an example, consider a cubic polynomial 
as a mode shape for a fixed-free bar. In order to 
satisfy the boundary conditions, it should have the 
following form for a nomalized bar of 1=L . 
 xccxcxcu )23( 23

2
2

3
3 +−+=   (5) 

In order to obtain all possible cubics of the above 
form in ]1,0[∈x , one of the two conditions can 
be imposed: (i) 0)( =′ su  or (ii) fsu =)(  at some 

]1,0[∈s  where 10 ≤≤ f . In either case, by 
normalizing u  so that )max(u  is unity, the 
curves shown in Fig. 2 are obtained. Out of all 
these, only two, shown with thick curves in Fig. 
2, are valid mode shapes for a fixed-free bar. 
These are determined by making the denominator 
of Eq. (4b) a factor of the numerator. They are 
given by the solution )1,0(∈s  of the following 
equation: 

 
06)1818(

)1054(51182
2

3456

=−−+

+−−+−

fsff

sfsss
 (6) 

This leads to only two thick curves shown in Fig. 
2. Their corresponding area profiles are shown in 
Fig. 3, the top area for the valid mode shape 
without the slope being zero except at 1=x  
(labeled 1) and the bottom area for the valid shape 
with 0=′u  at 32 −=x  in addition to 1=x  
(labeled 2). The frequencies of these two valid 
mode shapes are equal and are given by 

 
ρ

λωω )32(6
21

+
===

E   (7) 

 
Fig. 2 Possible cubic shapes for a fixed-free bar. 
The two valid mode shapes are shown as thick 
curves. 

 
Fig. 3 Area profiles of two valid cubic mode 
shapes shown in Fig. 2. 

 
Similar analysis for the fixed-fixed case 

reveals that only three are valid mode shapes 
(shown as thick curves) out of the many possible 
shapes. In fact, two out of these are the same due 
to the symmetry of the fixed-fixed boundary 
condition. 

As can be seen above, the valid mode shapes 
are rather limited. Therefore, flexible supports are 
considered next to expand the range of valid 
mode shapes.  

 
FLEXIBLE SUPPORT FOR A BAR 
Consider the bar with fixed and flexible support 
conditions shown in Fig. 1. To illustrate how the 
range of valid shapes can be expanded, consider 
the case of cubic shapes once again. Then, the 

x
sk)(xA

Fixed 
support Free 

support 

Flexible 
support 

1 

2 

1 

2 
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boundary conditions, Eqs. (1a) and (1c), give rise 
to the following cubic: 
 xcxcxcu 1

2
2

3
3 ++=    (8) 

where 

 01
1

21
1

31

1

2

1

32 =+







−
−

+







−
−

f
f

c
cL

f
f

c
cL  (9) 

with 

 
Lk
EAf

s

L=     (10) 

LA  denoting the area of cross-section at Lx = . It 
should be noted that 1c  is immaterial as it simply 
helps in normalizing the mode shape to have its 
maximum value equal to unity. Several values for 

2c  and 3c  give a vast range of shapes but there 
will be a further restriction on them in order to 
make ψ  in Eq. (4b) finite. 

 
Fig. 4. Possible cubic shapes for a fixed-fixed bar. 
The three valid mode shapes are shown as thick 
curves. 

 
Fig. 5. Area profiles of two valid cubic mode 
shapes shown in Fig. 4 
 
 Noting that the numerator of  ψ  is a cubic 
while the denominator is a quadratic, if the 
numerator cancels off as a factor of the 
numerator, ψ  will simplify to 

 qxp
uE

uuE
+=

′
+′′

=
λρψ   (11) 

Then, the coefficients of 3x , 2x  and x , and the 
constant term in the following equation are zero.  

 ( ) 0=′+−+′′ uEqxpuuE λρ   (12) 
Three out of the resulting four equations can be 
used to solve for p , q  and λ . 

 
1

22
c
cp =     (13a) 

 
1

36
c
cq =     (13b) 

1

3183
c
cEqE

ρρ
λ ==    (13c) 

The fourth equation, corresponding to the 
coefficient of x , gives 
 021827 2

223
2
3 =++ cccc   (13d) 

Substitution of Eqs. (13a) and (13b) into (13d), 
when 02 ≠c ,  yields 

 









±−=

3
111

q
p    (14) 

As pointed out earlier, 2c  and 3c  cannot be 
arbitraily chosen as they are constrained by Eq. 
(13d). Consequently, only one of them can be 
varied freely. It is an improvement over the fixed-
free and fixed-fixed cases because many mode 
cubics are now valid mode shapes, as explained 
next. 
 Let 3c , or equivalently q , be the 
independent variable to obtain a wide range of 
valid mode shapes. It should be noted that 
choosing 3c  (or q ) automatically determines λ , 
and hence the natural frequency, ω . 
Alternatively, choosing ω  fixes the possible 
cubic mode shape. Although it may seem 
restrictive, it is worth noting that now there exists 
a cubic mode shape for any frequency for a 
chosen material. The following steps summarize 
the procedure of obtaining all such cubic mode 
shapes and the corresponding physical parameters 
including the area profile and the spring constant 
of the flexible support using Eqs. (4a), (9), and 
(10). 
Step 1. Choose either 3c  (mode shape) or λ  
(natural frequency). If 3c  is chosen, two possible 
values for 2c  are computed using Eq. (13d), and 

1c  is determined such that the mode shape is 
normalized so that the maximum value is unity. 
Step 2. Determine q  using Eq. (13c). 
Step 3. Determine p  using Eq. (14). 

1 2 

3 

1 

2 

3 
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Step 4. Area profile is given by Eq. (4a) so that 
the area at the flexible support end is LA . That is, 

 )5.0(
)5.0(

2

2

qxpx
qLpL

L e
e

AA +−

+−
=   (15) 

Step 5. Using Eqs. (9) and (10), obtain p : 

 
qLLp
qLLpf 2

2

36
36

+−
++

=    (16) 

Step 6. Determine the spring constant of the 
flexible support using 

 
fL

EAk L
s =     (17) 

 Using the above procedure, a number of 
shapes that were previously invalid can now be 
obtained as valid mode shapes. Figure 6a shows 
several such shapes. For the thick curve in Fig. 
6a, the area profile is shown in Fig. 6b. 

 
Fig. 6 (a) A variety of possible cubic mode shapes 
for a bar with fixed and flexible supports (b) the 
area profile for the shape shown as a thick curve. 

 
Fig. 7 (a) A variety of possible cubic mode shapes 
without the 2x  term for a bar with fixed and 
flexible supports (b) the area profile for the shape 
shown as a thick curve. 

 
 The special case of 02 ≠c  has slightly 
different relationships for p  and q , 

 
1

33,0
c
cqp −==    (18) 

but the rest of the procedure is the same. Such 
cubic mode shapes and one example area profile 
are shown in Figs. 7a and 7b. 

This type of analysis can be done for any 
assumed shape (polynomial of certain degree or 
other types of functions). But it can become 
cumbersome, as the functions get complicated. 
So, a numerical solution procedure is presented 
below for any type of prescribed mode shape. 
 
NUMERICAL SOLUTION FOR A BAR 

Using the finite element method, the bar fixed 
at the left end and with a flexible support at the 
right end can be discretized into N elements, each 
with an area ),2,1( NiAi L=  and length 

NLl /= . Then, the stiffness and inertia matrices, 
K and M  respectively, are given by [22] 
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where 

 
i

i
i l

EAk =     (19a) 

 
6

ii
i

lAm ρ
=     (19b) 

The discrete counterpart of the continuous 
eigenvalue problem (Eq. (2)) is obtained as 
 MUKU λ=     (20) 
where U  is the 1×N  column vector consisting of 
the axial displacements of each of the right side 
nodes of the N  finite elements. 
 Just as Eq. (2) was re-arranged as Eq. (3) to 
make the area the unknown, Eq. (20) can be re-
arranged to make the column vector A  as the 
unknown where i th entry of A  is iA . 
 QPA =     (21) 
where 

(a) 

(b) Area profile 

(a) 

(b) Area profile 
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{ }Ns

T uk−= 000 LQ   (22b) 

6
)2()(

3
2121

12

11
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uul
l

uuEp

lu
l

Eup

+
−

−
=

−=

λρ

λρ

  (22c) 

for ( )1,3,2 −= Nj L , 

6
)2()(

6
)2()(

11
12

11

++

−−

+
−

−
=

+
−

−
=

jjjj

jjjj
jj

uul
l

uuE
p

uul
l

uuE
p

λρ

λρ

 (22d) 

6
)2()( 11 −− +

−
−

= NNNN
NN

uul
l

uuEp λρ  (22e) 

 
 Now, the structure of the linear equations in 
Eq. (21) readily allows computation of the areas 
as follows. 

 
NN

Ns
N p

ukA −
=    (23a) 

 1
)1(

+
+−

= j
jj

jj
j A

p
p

A  for 1,),1( L−= Nj  (23b) 

Thus, the areas of all the elements can be 
determined. An example is shown in Fig. 8 for the 
data given in Table 1. The mode shape and the 
area profile are shown in Figs. (8a) and (8b) 
respectively. 
 

Table 1. Data for Fig. 8 
ρ  = 7800 3/ mkg  
E  = 210 GPa  
L  = 0.8 m  
ω  = 100 kHz  
N  = 25 

01.0
)01.0( 2 Eks

π
=  = 6.6E9 mN /  

 
 
 It is important to note that the success of the 
above procedure depends on all areas turning out 
to be positive for a given discretized mode shape 
U , material properties ( E , ρ ), chosen natural 

frequency ( 2ωλ = ), and chosen spring constant 
of the flexible support ( sk ). When anyone of the 
elements’ areas of cross-section is not positive, it 
means that either the given mode shape is not 
valid or that the parameters chosen are 
inconsistent. Fortunately, the step-wise “back 
substitution” nature of the solution (Eqs. (23a) 
and (23b)) enables correcting both the parameters 
and, if necessary, the mode shape as well. 

 
Fig. 8 (a) A prescribed mode shape for a bar with 
fixed and flexible supports (b) the area profile for 
the shape obtained using the numerical method. 
 
FLEXIBLE SUPPORTS FOR BEAMS 

The equation governing the small-amplitude 
transverse, free vibrations of a beam is given by 

0)( =−′′′′ AwwEI λρ    (24) 
where )(xw  is the transverse deformation of the 
beam, )(xI  is the moment of inertia, and the rest 
of the symbols have the same meaning as in the 
case of bars. Furthermore, for most cross-sections 

)(xI  can be expressed as a function of )(xA . 

 nAxI α=)(     (25) 
Then, Eq. (24) can be re-arranged to have A  as 
the unknown function for the case of 1=n  (e.g., 
rectangular cross-section with constant depth but 
variable width) as 

0)(2 =−+′′′′+′′′′ AwwEAwEAwE iv λρααα  (26) 
Unlike Eq. (3), the above second order equation 
cannot be analytically solved in closed form. So, 
checking if a given mode shape is valid is not as 
straightforward. Using some properties of mode 
shapes of beams, four criteria were proposed for 
cantilever (fixed-free) beams in [17]. It was also 
shown with a sixth degree polynomial that valid 
mode shapes are rather limited. Flexible supports, 
as shown in Fig. 9, help increase the range of 
valid mode shapes just as in the case of bars. 
Although analytical solutions are difficult to come 

(a) 

(b) Area profile 
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by, numerical solution is similar to that of the bars 
presented in the paper. 
 
 
 
 
 
 
 
 
 
 

Fig. 9. Flexible supports for a beam 
 
CLOSURE 
The inverse problem of eigenmode shapes of bars 
and beams made of homogeneous material but 
variable cross-section is considered in this paper. 
Uniform density throughout the bar/beam 
differentiates this paper from the earlier work. 
Usual fixed or free boundary conditions severely 
limit the range of valid mode shapes. Hence, 
using flexible supports, it is shown for the case of 
bars that a much wider variety of mode shapes 
can be realized. It is worth noting that even then 
not all possible shapes are valid mode shapes. 
Furthermore, the frequency is usually fixed when 
a mode shape is prescribed. A numerical solution 
technique is presented. Analytical solutions for 
beams of different supports are yet to be explored. 
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